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RANDOM RECORD MODELS
*

Donald P. Gaver
Naval Postgraduate School

1. Introduction ,

Many situations suggest the study of the following class

of models: a point stochastic pacing process , P, with counting

process {N(t),t^0} develops over time, and associated with each

event or "point" is a real-valued random variable, X; let X
n

denote the n— such random variable, realized at the moment

N(t) first reaches n. Here P may be interpreted as specifying

the occurrence of demands—or supplies—of goods, water, payments

or reimbursements, opportunities, etc. , while X represents a

generic demand or reward size, X being the magnitude of the

n— event. Alternatively P governs the occurrence of system

shocks, possibly caused by floods or earthquakes, and X is a

generic shock magnitude.

The objective of this paper is to introduce various simple

models for P, and for {X } and to study the occurrence of

record events ("new highs") in the X-sequence as they appear under

the stimulus of P. Related investigations are those into the

classical record problem by Barton and Mallows [1] , Chandler [2]

,

Foster and Stuart [7], and Shorrock, e.g. [13], [14]. The studies

of extremal processes by Dwass [4], [5], see also Resnick [12]

and Resnick and Rubinovitch [11] also are pertinent. In particular

*
Research support from NSF Grant AG4 76 at the Naval Postgraduate
School is gratefully acknowledged. I wish to acknowledge useful
comments by George Humfeld, Mark Westcott, and the referee.



Pickands, in [10] , allows record events to be Poisson paced. The

results reported in this paper are mainly explicit forms, and

domains of attraction, for first record-time distributions when

P is one of several familiar point processes (Poisson, renewal,

pure birth) . In addition we point out that our distributions may

be interpreted as equipment lifetime distributions in the relia-

bility sense, and that the classical "marriage problem" of sequen-

tial decision theory, cf. De Groot [3], may be viewed as a record

problem.



2 . Process Specification .

A point stochastic pacing process , P, with counting

process {N(t),t^0} governs the occurrence of values , denoted

by {X , n=0, 1, 2, . . . } . Assume P and {X } to be mutually2 n n 2

independent, and the {X } to be an i.i.d. sequence with abso-

lutely continuous d.f. F(x). Mainly we shall assume that P

is an orderly process, so we can speak of the times between

successive events in P; let the n— of these be (T ,n=l,2,...}
n

so that the time of the n— process event is t = Y. , T. ,r n ^i=l i

n = 1,2,... Suppose that at t = a reference value, X~ ,

is available; X« is a random variable with d.f. F n^x ^ •

Definition . A first record with respect to X_ occurs at

t = t if (a) X. < X
ft , all i < n, (b) X > X n , in which

n, i In,
case t. = t = the first record time, and X = R, , the firstIn, n, 1

record value. Subsequently, a k— record occurs at time

V =
£-i T

i
if (a) x

i * Vi- n
k-i * i K n

k'
(b)

k
X > R, . , and T. = t - t , R, = X Alternatively
n
k

k-1 k n
k

nk_ 1 k n
R

x n
= inf{t: max X > x

rt } (2.1)
1

ruCN(t)
n °

R
l - X

N(V < (2 ' 2)

T n + x_ = inf {t: max X > R,

}

1 2 -,._ , . . n l
n^N (t)

R
2

X
N(t

1
+t

2
)



3 . Poisson Paced First Records , with Variations .

Suppose P is Poisson with time-dependent rate A (t)

,

ft
and hazard A(t) X(t')dt'. If F n

(
• ) denotes the d.f. of

J U

X
Q

, and F(') the d.f. of (x , n=l,2,...}, then

e
-A(t)

[

1 -F ( x )3
dFo ( x)dA(t)dF(z) (3.1)

from which various special cases of interest immediately appear.

3.1 F
Q
(«) = F(-)

.

In this case the integration is immediate, and

-A(t) [l-F(z)] -A(t)
P^e (dt) ^^(dz)} = S ^^ 2 dA(t)dF(z) . (3.2)

The marginal d.f. of record size is obtained by integrating out t

in (3.1) ; the density is

P(R
1

e (dz)> = -log[l-F(z) ]dF(z) (3.3)

just as in the classical setup. The marginal d.f. of x.. is given

by integrating first on z. Most simply, however,

t{T
1
>t|X -x} = e

-A(t)[1 -F(x)1
; (3.4)

Removal of the condition using F. = F yields

l-e"A(t)

.

P{T
l
>t} =

^TTt) ' {3 ' 5)

Note that in this, and in other, cases P{t, > t} is given by

integration of the generating function of the counting process of

P:

P{t
1

> t} =
*

I e
-A(t) [A(t)]

n
F
n (x)dF(x)< (3-6)

n=0 n!



Further note that since A(t) is non-decreasing, then if h >

-A(t)
E[t

1
]

= P{t
1

> t}dt =
h !_ e

-A(t)

A(t)
dt +

J

1 -

h ATtT
dt,

<l-e-
A(h

>>

.00

h
so

E[x,] < 0° iff
h

dt
ATET

< oo V h > . (3.7)

For time homogeneous Poisson P it is clear that no finite moments

exist

.

3.2

and

and

Random (Gamma) Hazard, F
fi

(
• ) = F(*).

If (A(t)} is a gamma process, then E [e ] = (777—) /

(N(t)} is a negative binomial process. Therefore

ktf
co r

P{t > t} = U

y+l-F (x)
dF(x) = y

l-kt

-. l-kt -1

(3.3)

P(t > t) ~ — = -Fl
1

; kt E[A(t)]
as t -> o°. (3.9)

Letting k decrease but such that — = 1 induces an increasingly

long Pareto tail, and a buildup of mass near zero. A similar

effect is achieved by mixing Poisson P's rate parameter by the

gamma (applying a gamma prior to X)

:

P{x
1

> t} =
roo -At , , ,.k"l

1-e -yA (yX , y

~TF- e
r ( k)

ydX " t

. -k+i

y

-k+l
(3.10)

If P has been observed throughout the time interval (-T,0),

and j events occurred, then the posterior is gamma with y = T+ a,

-Xa (Xa)
b_1

k = j + b, where the prior density is p(X) = e —fTbl— a and

(3.6) provides a Bayes-type predictor of the distribution of time



until the first record, the latter being referred to an initial

X
Q

with d.f. F.

3.3 Process Observed for Initial Time T.

If the P-paced process has been observed for (-T,0) and

further records are referred to the largest X occurring therein,

then

F
Q
(x) = e

-A(T)[1-F(x)I
, (3.11)

and application to (3.4) yields

D r T . .i A(T) f, -[A(T)+A(t)]n. n 12 x

P{T
l
>t} ~ A(T)+A(t) U " e } ' (3 ' 12)

with confidence given by the r.h.s. of (3.12) there will be no new

maximum in (0,t) greater than that in (-T,0)

.

3.4 The Distribution of t .

n

Since t , the time between n-1— and n— records
n

does not depend upon the distribution of X, we may capitalize

upon the Markovian property of the exponential, F(x) = 1 - exp(-x),

to characterize the distribution of t for any n. Now for the
n J

time-homogeneous Poisson and exponential X,

, . -x
P{t e(dt)|R

n
=x} = e

re
Xe

X
dt. (3.13)

n n-1

We can write the characteristic function (ch.f.) of log t as
n

follows. First,



E[e
iz log x

n
R =x] =
n-1 t e Ae dx

, iz .

1^ 1ZX
= (t) e

iz -u ,u e du. (3.14)

Next remove the condition using the fact that R n is gamma^ n-1 r

iz log t i iz
1ZX -x X

e e
n-1

(n-1)

!

dx
iz -u ,

u e du

_ iz log X
f 1

n

(i=h)
iz log u -u ,

e ^ e du

,

(3.15)

which may, on the basis of ch.f. unicity, be interpreted as saying

that the distribution of At is that of the sum of two independ-

ent random variables, one being gamma with mean and variance

equalling n, and the other .being the logarithm of a unit expo-

nential. Moreover, the ch.f. of — log at is
n ^ n

log At
iz

n

E[e
n

] = (1-^)
* n J

-n iz -log u
n ^ -u ,

e e du (3.16)

iz
as n -* °°

and invocation of the continuity theorem for the ch.f. shows that

/At -> e in probability. Finally, consider the ch.f. of
n

log At - n^ n

/n
As n becomes large the gamma component dominates

and the continuity theorem shows that the latter sequence of r.v.

tends to N(0,1) in law. These results are analogous to those

of Neuts [9] for the classical record problem.



4 . Renewal-Paced Records .

Suppose the pacing process P is an arbitrary renewal

process with i.i.d. interevent times (u } having d.f. H(«),

and H(0+) = 0. Then

00

P{T
1

> t
I

X = x} = I [H
n
*(t) -H (n+1) *(t)]F

n
(x) (4.1)

n=0

and, Laplace transforming, the following explicit form appears:

f e
_St

P{x, > t
|
X
n
= x>dt = 1"H

g
(s) —

^

(4.2)
J X U S l-H(s)F(x)

where H is the Laplace-Stielt jes transform of H. If F_ = F,

we integrate to obtain

00 A

e"
St

P{t > t}dt = 1"" (S) log[l-H(s) ]

,

(4.3)
-0 -sH(s)

so
— ST *•

E[e X
] = 1+ 1

I
H(S) log[l-H(s)]. (4.4)

H(s)

Example 1 . If P is time homogeneous Poisson we have seen that

«/ ^ t \ k • u (1 for t ^ 1/X
Pit > t) ~ yt as t -* », just as is true when H /+.) - )

\ for t < 1/X,

i.e. when records are regularly paced.

a
—

s

Example 2 . If H is a stable distribution, then H(s) = e

(0 < a < 1) and this and (4.3) yield

ot

e"
St

P{t > t} = -—— log[l-e" S
] ~ -as

a
log s. (4.5)

l s

so by a Tauberian theorem (Feller [6] , p. 447)

,

P(t
1

> t} ~
r(1

°
a)

t"
a
log t (t-"») (4.6)

8



1 -1/2
For instance if a = -=- then H tails off like t ' while

the d.f. of T, tails off like t
_1//

' log t.

4.1 Domains of Attraction.

Suppose that n independent copies of x, accumulated
n

and summed: S = £ T. (i) . We record several facts about the
n

i=l
L

behavior of S for large n ascertainable from general theory;

see Feller, II [6], and Gnedenko and Kolmogorov [8], p. 175,

Theorem 2

.

A. If p{t > t) ~ v-r-, as is true when P is Poisson,

regular-spaced, and in other situations as well, S is attracted

to a stable law of order a = 1. Direct expansion of the rele-

vant Laplace transform around s = shows that S /n log n -* 1

in probability.

B. If P is renewal with stable law of order a (0<a<l)

interevent times, then because of the asymptotic behavior of 4.6),

the further results of Feller [6], pp. 448-449 immediately imply

that

-5- ( 3 }

z (4.7)
a a
n

Z being once again stable of order a. Here a satisfies
a r 2 n

a ~ an log a (4.8)
n ^ n

1/a
and a > n ' for large n: obviously a strong normmg is

required to bring the stable-paced record times back to stable.

A suitable normalizing constant derived from (4.8) is seen to be



a ~ (n log n)
1/a (4.9)

This result also follows immediately from a transform continuity

theorem. Simply scale by a . (a -*«>)
2 J n n

an 1 -'{1 + [exp(f-)
u
-l]log[l-exp(-(f-) a

]}
a. d
n n

n
(4.10)

and expand in Taylor's series to see that if

a
-s

n log a

a
i

n

* 1 then

the above (4.10) tends to e , the stable law (a) transform.

10



5 . Furry Records .

For variety let P be the simple pure-birth or Furry-Yule

process ([6], I, p. 450) generated by X nX. Start with a single

progenitor at t = (of value X„ drawn from F(x)) . Now N(t)

,

the number of new births in (0,t) , is geometric, and each is

endowed with a value, X, that is an independent copy of X„.

Hence

g(z,t) = E[z
N(t)

] = S _. (5.1)
l-z(l-e )

and

p{x >t> =

00

/ ±\^ f
e"

Xt
dF(x)g(z,t)dz = '

^ l-F(x) [1-e
AC

]

Xte~U _ Xt
" I =Tt " ~XFT

1-e e -1

00 B

.

= I -^ (U) 1
, (5.2)

k=0

where the B. are the Bernoulli numbers. Integration of (5.2)

yields the mean of the first record time:

E[ Tl ] = A"
1
!! + ^ + ^ + ...] =i ^~- h™ . (5.3)

Thus the Furry P process encourages a record to occur after a

mean delay of very nearly half way between the mean second and

third Furry jump times.

5.1 General Pure-Birth P; Laplace Transform.

If P is pure-birth with general intensity X we find

by following a recurrent events argument and an integration that

11



e"stP{T
1
>t}dt

n X .

~ I nX .'
I X .+

n=l n 3=1 D

(5.4)

Now apply a Tauberian theorem allowing s -* to obtain

[T ii - I ar '

n=l n
(5.5)

which shows that the first record time possesses a mean iff the

series on the r.h.s. converges.

12



6 . Models .

The P-paced record process suggests several specific

models

.

6.1 A Shock Model in Reliability.

Suppose X represents the magnitude of the n— shock

delivered by P. Let X- represent the "strength" of a component

manufactured to inhabit the P environment; the component survives

to time t if no shock in time t exceeds X„ . Hence (3.5) ,

(3.8), (3.10), and (3.12) all may be interpreted as component life

distributions. It may be reasonable to replace F by

k+1
[F(x)] , k > 0, arguing that the manufacturer will attempt to

build in a safety factor; safety increases with increasing k.

In this case (3.2) becomes

1

P{x
1
>t} = (k+1) e"

A(t)w
(l-w)

kdw (6.1)

Example . If F (x) is taken to be exponential with

parameter 0, so E[X] = 6 then, having observed an X we

can consider setting X
fi

= r X, r < 1 representing a safety

factor. Then

and

P{T
1
>t} =

P{x
Q
£x} = 1 - e

0X
(6.2)

00

-At[e ] n -r9x,
e J r0e dx

T(r+1)

Ut)
r

13

xt _ z
e

Z
z , r (r+1) fe. ,*

r( Z )

dz F (6 - 3)
1 (Z)

(At)
r



as t -*- °o, and an exceedingly long tail results if r < 1,

representing conservative design. The remarks of Section 4

indicate that sums of times to failure are attracted to the

stable law of order r if < r < 1.

6.2 The Marriage Problem.

At the moments of event occurrence in a Poisson process a

decision maker (art collector, suitor, employer, or what have you)

is shown objects of value X. Allowed to inspect for only a

finite time, and thwarted from any return to previous opportuni-

ties, he seeks to select that X of maximum value to occur in

the interval.

Suppose the decision maker sets aside a time T to look

over the field, leaving himself U for choice; and enjoyment or

regret. U + T is fixed. Let his decision rule be to examine

all X-values to occur in T, and then to select the first X-

record, if any, thereafter. He wishes to choose U in such a

way as to maximize his probability of ending up with the greatest

X-value to occur during U + T. Following this rule enables him

to select the best X to occur throughout (0,U+T) with proba-

bility nearly e = 0.368..., exactly as in the classical formu-

lation, cf. De Groot [3], in the event that opportunities come

thick and fast, i.e. as X -* ». For suppose he confronts the

time period (T,T+U) , committed to picking the first record

therein, if any occurs. Given x was the record during (0,T),

the probability that the first record to occur subsequently during

(T,u+T) is also the last is

14



cp(U,x) =

U
-At[l-F(x)] Adt dF(y)e- (U- t)[1 - F(^

x

D

e
-Xt[l-F(x)] _ e

-AU[l-F(x)]

U - t
dt. (6.4)

The best opportunity during (0,T) has distribution

F (x,T) = e
-AT[1-F(x)

]

(6.5)

and so the probability that the best overall is picked is

cp

a
(T) = cp(U,x)dF (x,T) (6.6)

Now interchange integration order and invoke (3.12) to obtain

U

<P X
(T) =

u-t \ T+t
(l-e-

X(T+t)
) T+U

(l-e-
X(T+U)

)}

If A -* °° the integral tends (bounded convergence) to

U

cp(T) =
T+U

dt
T+t T+U

T , T+U
log -=-

(6.7)

= -T log T if T + U = 1, (6.8)

and differentiation shows that cp is maximized for T = e

Finally, cp (e ) = e , agreeing with the classical solution,

see De Groot [3], p. 331. Now if the decision maker values the

time to enjoy his prize as well as its attainment then he may be

tempted to optimize max(U-T,,0), t, being the time of the first

and only record to occur after T, measured from T as origin.

15



Then his expected enjoyment is

U

iMT) =
T+U T+t y L T j T+U

6

-T+IK UT= T logm -
T * T+U

= -T log T - T(l-T) (6.9)

with maximizing value close to T = 0.2, and ip ( . 2 ) = 0.16. If

our decision maker chooses the latter strategy he wins with approx-

imate probability 0.32 rather than the 0.37 probability of success

achieved under the classical decision rule. On the other hand,

if he chooses to observe for T = e his payoff under the time-

weighted utility is 0.14. Perhaps T = 0.25 will appeal as an

easily remembered compromise that nearly maximizes both goals men-

tioned. Finally, if X becomes small it may be seen that optimum

T -*
. 5 if the above rule is followed. However, this rule cannot

be optimum under such light traffic situations: for very small

X one does best by choosing the first opportunity to appear.

16
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